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Table I. Product Distribution of 0.455 M Bromo Peroxide-Tin 
Hydride Reactions 

bromo 
peroxide 

peroxide, epoxy Alcohol, 
%a,b 

1 
2 
3 
4 

82 
17 
92 

100 

18 
83 

8 
0 

" Product distributions are normalized to 100%; product accounted 
for was >80%, * Total epoxy alcohol 7 and furan and pyran 8 and 9 
were analyzed. 

Table II. ra and ksH\ Values Found for Radicals 11-14 

radical !ESuii. 

11 
12 
13 
14 

0.09 
1.05 
0.01 

<10"6 

7.5 X 104 

8.7 X 105 

1 X 104 

<1 

"r=kSHi/kH. 

r̂ OH 

In Table I is presented the product composition for reaction 
of the bromo peroxides 1-4 with 0.455 M tributyltin hydride. 
Product accountability was high (85-100%) with reactions run 
with tin hydride concentrations >0.05 M. 

The mechanism presented in Scheme I is consistent with the 
products observed.16 Further, for 1, 2, and 3 the product dis-

Scheme I 
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tribution varies as a function of Bu3SnH concentration as is 
required by this mechanism. For example, the percent yield 
of peroxide 10 derived from 3 is 92, 82, 78, 66, and 55% as the 
tin hydride concentration is reduced from 0.455 M to 0.2,0.1, 
0.05, and 0.02 M. On the other hand, no epoxy alcohol could 
be observed in the reaction of 4 with Bu3SnH with concen
trations of hydride as low as 0.01 M. 

With the mechanism presented in Scheme I as a format, a 
kinetic expression1618 can be derived that gives a rate ratio 
of r = fcSH;/kH for the radicals 11-14 derived from 1-4. Fur
ther, since values of k\\ are known,19 the & s H i r a t e constants 
can be calculated (see Table II). 

We suggest" that the dihedral angle </> must be 180°, or 
nearly so, for maximum SHI reactivity. For radical 12, derived 
from 2, a chair conformation20 allows an equatorial radical to 
attack the peroxide bond from the back side. For the more 
planar dioxolanyl radicals 11 and 13 (from 1 and 3), it is dif
ficult to adopt conformations with the 180° preferred angle 
for substitution, and the rates for substitution are thus one to 
two orders of magnitudes slower than /csHi f° r 12. The endo-
cyclic radical 14 formed from the seven-membered-ring per
oxide, 4, is constrained to attack the peroxide bond from the 
side (4> < 70-100°) rather than via the back-side pathway and, 
as a consequence, no detectable S^ reaction is observed. It 
should be noted that the transition states for SHI reaction of 
the radicals 12 and 14 are isomeric but that the rate difference 
for substitution between these two radicals is >10 6 s - 1 . This 

14 

observation supports the notion that the triangular transition 
state (side approach as in 14) is not favored1-3 and points to 
a preferential colinear, or back-side, substitution process. 
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Chemistry at Liquid-Liquid Interfaces. 
Evidence for an S N I Reaction Occurring 
at a Toluene-Water Interface1 

Sir: 

Although many types of chemical and biochemical reactions 
are believed to take place at liquid-liquid interfaces, few ex
amples have been well documented. It is not surprising, 
therefore, that only a limited understanding exists of how re
actions at interfaces differ from comparable reactions carried 
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Figure 1. Plot of 106fcobsdKorgasa function of surface area, 5. All exper
iments were carried out at 90 0C. 

out in homogeneous solution. Moreover, the question of what 
is a liquid-liquid interface (at the molecular level) has not been 
answered. Information needed to define these regions such as 
composition, structure, and microenvironment remains un
available. 

In order to probe the nature of a liquid-liquid interface using 
kinetics, one would like to be able to examine a rate-limiting 
chemical reaction occurring at the interface. No systems re
ported to date have been unambiguously shown to meet this 
requirement.2 We now report principal findings of a kinetic 
investigation of the biphase hydrolysis of 1-bromoadamantane 
conducted in a toluene-water system. Our data provide com
pelling evidence for what we believe is the first example of a 
rate-limiting S^l reaction occurring at a liquid-liquid inter
face. Comparison of the free energy of activation for the bi
phase hydrolysis with values for homogeneous systems allows 
for a crude estimate of the nature of the interface as reflected 
by its apparent ionizing power. The hydrolysis of 1-bro
moadamantane was specifically chosen for this study because 
of its mechanistic simplicity and its sensitivity to the nature 
of the microenvironment.5 

Liquid-liquid biphase reactions have previously been studied 
kinetically as (1) unstirred,4 (2) mildly stirred,4'6 and (3) 
rapidly stirred processes.3 Except in the case where mild 
stirring was employed,7 all kinetic experiments reported in this 
work were conducted in a stationary system. This condition 
was chosen to avoid the complexities associated with the hy
drodynamics of stirring and to simplify interpretation.8 A 
standard biphase kinetic run was carried out as follows. An 
8-mL culture tube (Corning No. 9826, 13 X 100 mm) 
equipped with a Teflon-lined screw cap was charged via pipet 
with 1 mL of a toluene solution which was 0.01 M in 1-bro
moadamantane and 0.01 M in n-undecane (internal standard) 
plus 1 mL of 0.1 M aqueous sodium hydroxide solution. The 
tube was placed in an oil bath maintained at 100 ± 0.5 0C. The 
reaction was followed by withdrawing 1-fiL samples from the 
organic phase and monitoring the disappearance of the reac-
tant by GLC. For sampling, the tube was removed from the 
oil bath, quickly cooled to nearly room temperature, opened, 
resealed, and returned to the bath (the overall process took < 1 
min). In all cases clean first-order kinetics over at least 3 
half-lives was obtained.9 Material balance (>95%) and re
producibility of the observed first-order rate constants (±10%) 
were good.10-11 

In order to examine the dependence of rate on the interfacial 
area and the volume of the aqueous and organic phases, we 
have used culture tubes of varying diameters.12 Our results are 

_ 7 

2 

— 6 

"5 
£ 5 

0> 
C 

• » - J 

C 

a 
E 
-S * 
o >, 

2 

A ' 

O 

A 

O 

A 

A O 

A O 

O 

A 
O 

" A 0 

O 
- A 

A 0 

O 

Time (h) 
Figure 2. Diffusion rate profile of 1-methoxyadamantane-r from toluene 
to water. Conditions used follow: 1-methoxyadamantane-r, 0.01 M, 10 
mL; aqueous sodium hydroxide, 0.1 M, 40 mL, interfacial area, 9. 1 cm2. 
Temperatures were 30 0C (O) and 50 c (A). 

summarized to Figure 1. A normalized rate constant calculated 
from the formula ko = ^obsd^org when plotted against surface 
area gave a straight line which extrapolates through the ori
gin.'3 The observed rate constant was independent of the vol
ume of the aqueous phase. 

The enthalpy and entropy of activation of the biphase hy
drolysis was determined by measuring the rates at five different 
temperatures in the range of 95-120 0C.14 The Arrhenius plot 
derived from this data was excellent and yielded the following 
values for the activation parameters: A//* = 27.9 ± 0.8 kcal 
mol-'; AS* = -10.4 ± 0.5 eu; AG* = 31.8 kcal mol"1 at 
373.15 K. 

In order to evaluate the diffusional resistance of mass 
transfer in the liquid phases, mild stirring was employed.7 

Special care was taken to avoid altering the apparent interfa
cial area (50 rpm). The observed first-order rate constant was 
identical with that of a comparable unstirred reaction. 

Diffusion of tritiated 1-methoxyadamantane, chosen as a 
model for 1-bromoadamantane, from toluene into water was 
measured using concentrations and conditions similar to that 
employed for the hydrolysis study.15-17 The diffusion rate 
profile obtained at 30 and 50 0C is presented in Figure 2. 
Equilibrium was reached in 20 h and the distribution coeffi
cient was (C,iHi80-f)water/(CiiH]8O-Otoluene = 0.0007. The 
initial diffusion rates at 30 and 50 0C were 2.5 X 1O-12 and 3.6 
X 1O-12 mol s_1 cm -2, respectively. Based on these rates, the 
activation energy for diffusion through the interface is esti
mated to be <3.5 kcal mol-1. 

The two mechanistic questions most fundamental to this 
investigation are (1) what is the rate-limiting process and (2) 
where does reaction occur? Rate-limiting diffusion of the or
ganic halide through the toluene-water interface or through 
the bulk organic phase can be ruled out on the basis of the 
following arguments. First, the observed free energy of acti
vation for the hydrolysis reaction was much higher than that 
expected for a diffusion-controlled process and lies in the range 
of values found in homogeneous sytems.5 Second, the rate of 
diffusion of 1-methoxyadamantane-f from toluene to water 
was only slightly sensitive to temperature, reflecting a low 
energy barrier for mass transfer through the interface. Third, 
we found that mild stirring of the liquid phases produced no 
detectable change in the apparent rate of reaction. Taken to-
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Figure 3. Plot of AG* (373.15 K) as a function of mole fraction of water 
in water-dioxane mixtures. Data used was taken from (•) this work19 and 
(A)ref5. 

gether, these results provide very strong evidence that chemical 
reaction is rate controlling. 

With a rate-limiting chemical reaction, the linear depen
dence of fco on surface area shown in Figure 1 can be ration
alized only in terms of an interfacial process. Moreover, the 
fact that this plot extrapolates through the origin shows that 
the observed reaction takes place exclusively at the phase 
boundary. Independent evidence that reaction is not occurring 
in the bulk liquid phases comes from two additional sets of 
experiments. First, we have found a linear dependence of AG* 
on the mole fraction of water present for the hydrolysis of 1-
bromoadamantane carried out in homogeneous dioxane-water 
mixtures (Figure 3). The extrapolated free energy of activation 
in pure water (AG* = 23.0 kcal mol-1) is considerably lower 
than that observed for the biphase process.18 Second, when a 
toluene solution of 1-bromoadamantane was saturated with 
water at 100 0C for 1 h and then heated for another 24 h at the 
same temperature in the absence of the aqueous layer, no 
further hydrolysis could be detected. 

If Figure 3 is used as a crude calibration to estimate the 
nature of the microenvironment at the toluene-water interface, 
an ionizing power equivalent to a 91% (v/v) dioxane-water 
mixture is obtained. Menger has proposed that a hydrocar
bon-water interface is a three-dimensional region containing 
both hydrocarbon and water which gradually changes into bulk 
aqueous and organic phases.3 Our data indicate that the tol
uene-water interface is of intermediate polarity and is con
sistent with such a model. However, more information is clearly 
needed before a complete description of the microenvironment 
is possible. 

We believe that biphase hydrolysis of 1-bromoadamantane 
represents an attractive kinetic probe for exploring aqueous-
organic interfaces and related studies aimed at defining these 
regions in greater detail are being planned. 
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Synthesis and Thermal Decomposition of 
Homoleptic terf-Butyl Lanthanide Complexes1 

Sir: 

The organometallic chemistry of the lanthanide elements 
is of interest because the unique physical characteristics which 
distinguish the lanthanides from other metals may lead to 
patterns of reactivity for organic molecules attached to the 
lanthanide center which are substantially different from those 
found with other metals. Despite this potential for unusual 
organometallic chemistry, relatively few investigations of the 
organometallic chemistry of these elements have been made.2 

We report here the synthesis of a new class of stable, tr-bonded 
organolanthanide complexes involving the terf-butyl ligand: 
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